Terrain classification using intelligent tire

نویسندگان

  • Seyedmeysam Khaleghian
  • Saied Taheri
چکیده

A wheeled ground robot was designed and built for better understanding of the challenges involved in utilization of accelerometerbased intelligent tires for mobility improvements. Since robot traction forces depend on the surface type and the friction associated with the tire-road interaction, the measured acceleration signals were used for terrain classification and surface characterization. To accomplish this, the robot was instrumented with appropriate sensors (a tri-axial accelerometer attached to the tire innerliner, a single axis accelerometer attached to the robot chassis and wheel speed sensors) and a data acquisition system. Wheel slip was measured accurately using encoders attached to driven and non-driven wheels. A fuzzy logic algorithm was developed and used for terrain classification. This algorithm uses the power of the acceleration signal and wheel slip ratio as inputs and classifies all different surfaces into four main categories; asphalt, concrete, grass, and sand. The performance of the algorithm was evaluated using experimental data and good agreements were observed between the surface types and estimated ones. 2017 ISTVS. Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compaction-Based Deformable Terrain Model as an Interface for Real-Time Vehicle Dynamics Simulations

This paper discusses the development of a deformable terrain database to be used in a co-simulation environment with a multibody dynamics vehicle model. The implementation of the model includes a general tire-terrain traction model which is modular to allow for any type of tire model that supports the Standard Tire Interface[1] to operate on the terrain. Rather than utilizing empirical terramec...

متن کامل

Rover Traversability Assessment Via Visual Sensing Of Spatial And Textural Terrain Image Features

Visual sensing techniques are presented for enhancing rover traversability assessment on planetary surfaces. Geometric information from stereo image range data is used to identify salient terrain features such as rocks, and that information, along with terrain image appearances, is associated with rover traversability. Performance of rule-based, neural network, and fuzzy logic methods for class...

متن کامل

Improving the Quality of Terrain Measurement

The emergence of high-fidelity vehicle and tire models has raised the requirements for terrain measurement capabilities. Inaccuracies that were once tolerable for measurement of general terrain roughness are no longer acceptable for these new applications. The techniques in this work seek to improve the quality of terrain measurement in addition to providing an objective way to describe the acc...

متن کامل

Motion Dynamics and Control of a Planetary Rover With Slip-Based Traction Model

This paper investigates kinetic behavior of a planetary rover with attention to tire-soil traction mechanics and articulated body dynamics, and thereby study the control when the rover travels over natural rough terrain. Experiments are carried out with a rover test bed to observe the physical phenomena of soils and to model the traction mechanics, using the tire slip ratio as a state variable....

متن کامل

Slip-based Traction Control of a Planetary Rover

This paper investigates slip-based traction control of a planetary rover that travels over natural rough terrain. Special attention is made on tire-soil traction mechanics and articulated body dynamics. Experiments are carried out with a rover test bed to understand the physical behavior of tire-soil interaction and, thereby, a traction model is investigated using the tire slip ratio as a state...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017